A non-linear forecast combination procedure for binary outcomes
نویسنده
چکیده
We develop a non-linear forecast combination rule based on copulas that incorporate the dynamic interaction between individual predictors. This approach is optimal in the sense that the resulting combined forecast produces the highest discriminatory power as measured by the receiver operating characteristic (ROC) curve. Under additional assumptions, this rule is shown to be equivalent to the quintessential linear combination scheme. To illustrate its usefulness, we apply this methodology to optimally aggregate two currently used leading indicators – the ISM new order diffusion index and the yield curve spread – to predict economic recessions in the United States. We also examine the sources of forecasting gains using a counterfactual experimental set up.
منابع مشابه
Brent crude oil Price Forecast with Hybrid Model of Nonlinear Grey Model and Linear Arima Waste Correction
The characteristics of crude oil and the factors affecting the price of this energy carrier have caused its price forecast to always be considered by researchers, oil market activists, governments and policy makers. Since the price of crude oil is affected by many factors, therefore, continuous studies should be done in this way so that the estimates made over time, the results are more accurat...
متن کاملThe Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data
The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...
متن کاملThe Variance-covariance Method using IOWGA Operator for Tourism Forecast Combination
Three combination methods commonly used in tourism forecasting are the simple average method, the variance-covariance method and the discounted MSFE method. These methods assign the different weights that can not change at each time point to each individual forecasting model. In this study, we introduce the IOWGA operator combination method which can overcome the defect of previous three combin...
متن کاملPrediction of monthly rainfall using artificial neural network mixture approach, Case Study: Torbat-e Heydariyeh
Rainfall is one of the most important elements of water cycle used in evaluating climate conditions of each region. Long-term forecast of rainfall for arid and semi-arid regions is very important for managing and planning of water resources. To forecast appropriately, accurate data regarding humidity, temperature, pressure, wind speed etc. is required.This article is analytical and its database...
متن کاملDay-ahead Price Forecasting of Electricity Markets by a New Hybrid Forecast Method
Energy price forecast is the key information for generating companies to prepare their bids in the electricity markets. However, this forecasting problem is complex due to nonlinear, non-stationary, and time variant behavior of electricity price time series. Accordingly, in this paper a new strategy is proposed for electricity price forecast. The forecast strategy includes Wavelet Transform (WT...
متن کامل